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ABSTRACT

Five models are introduced for the factor analytic treatment of a

set of measures obtained for the same sample of persons on two different

occasions. l'he models differ in terms of the assumptions made regarding the

constancy of the (1) factor (actually component) score and (2) factor pattern

matrices from occasion 1 to 2. Least-squares pr cedures are developed for

the estimation of the component scores and patterns under four of the models;

canonical correlation procedures are developed for the fifth. Illustrative

examples using these procedures are presented, and the research implications

of the hypotheses and procedures underlying each model are discussed.



SOME NOTES ON THE FACTOR ANALYTIC TREATMENT
OF MEASURES OBTAINED ON TWO DIFFERENT OCCASIONS

A. Ralph Hakstian

University of Alberta

The purpose of this paper Is not to develop a single, in some sense

preferred, procedure for the factor analysis of data matrices obtained on

two occasions, but rather to bring into clearer focus the parameters

such a situation and to suggest possible analysis strategies depending upon

the assumptions the experimenter wishes to make about his data and the particular

questions he wishes to answer. In a strict sense what is to follow is only

generically "factor analysis," as the estimation of communality implied by

the common-factor model is absent. Instead, considerable use is made of the

Eckart-Young theorem (see Eckert & Young, 1936; Johnson, 196')), and the

component model is generally implied. We begin with a discussion of some

important characteristics and assumptions associated with longitudinal data.

Following this, certain of the possible alternatives are selected and developed

into clearly operational analysis strategies. Empirical examples of some of

these strategies follow, and we conclude with a word concerning practical

implications.

1. Parameters of Longitudinal Data

One way to analyze longitudinal data is to treat occasion either as the

observational unit--on which scores on either variables or persons are

recorded--or as the attribute being measured, in conjunction with either a

single variable or a single person. Two dimensional designs involving
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occasions by persons or variables constitute four of Cattell's [1952] six

factor analytic designs-0-, P-, S-, and T-techniques. For these designs to

lend stability to the obtained correlations and factors, however, a large

number of occasions Is generally required, analogously to the requirement

of a reasonably sizeable person sample in standard, or R-technique, factor

analysis.

The experimenter may not wish to obtain factors either representing

occasion groupings or based on inter-occasion variation, but, instead may

require standard factors--representing variable groupings and based on inter-

person variation--that are-, in some sense, stable or present over two or more

occasions. Given the latter requirement, several alternatives exist. His-

torically, longitudinal studies involving the same battery of tests administered

to the same sample of persons on two or more occasions have reflected the

assumption of unchanging factor scores, with the changing factor pattern

matrices the locus of interest [e..a., Evans, 1967; Fleishman, 1957, 1960,

1966; Harris, 1963; Meyer & Bendig, 1961]. Tucker's [1963] application of

three-mode factor analysis to the measurement of change reflected the converse

assumption, that of unchanging pattern coefficients but changing factor scores.

The procedures derived by Corballis and Traub [1970] are based on both changing

factor scores and changing factor patterns, and an excellent discussion of

the conceptual merits of the differitg assumptions can be found in this

latter paper.

A feature of the model proposed by Corballis and Traub [1970] is that

although factor scores may change, from occasion 1 to 2, these factor scores

are orthogonal both within and bet een occasions. It is the opinion of the

present author that although the restriction to within-occasion factor

orthogonality may not be excessive, that to between-occasion orthogonality
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is unwarranted. The effect of this latter constraint is to specify uniquely

the factor pattern matrices for the two occasions, thus precludi g a simple

structure rotation if the initially obtained factor patterns are difficult

to interpret.

The purpose of the remainder of the present paper, then, is the

presentation of procedures for analyzing longitudinal data under several of the

assumptions, in turn, mentioned earlier. We are interested, exclusively,

in the experimental situation in which the same sample of persons is measured

on the same set of variables on two different occasions. We thus are

concerned with the pretest-posttest or change paradigm so useful in psychological

and educational research, where the aim may be to isolate time-stable constructs,

to study correlates of the constructs at the two different times to note

changes over time in constructs of interest, or perhaps, to observe the

effects on these constructs of intervening experImental treatments.

2. Derivation of Anal_asi.A Procedures

In this section, our aim is to consider, in turn, various experimental

situations which differ in the assumptions made about the constancy of the

factor score and factor pattern matrices over the two occasions. As has

been mentioned, the common-factor model is not implied as it was in the

paper by Corballis and Traub [1970]; that is to say we are not concerned

with the estimation of communalities as well as common-factor loadings.

Instead, the component model is implied, and extensive use is made of the

Eckart-Young theorem and its implications (see Eckert & Young, 1936; Johnson,

1963). In most cases, however, although the component model is implied, the

task is to find a least-squares fit to either two sets of components or two

matrices of pattern coefficients, or perhaps both.

In the various situations for which prodedures are derived, we begin with
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two data matrices, Z and 2
2' both of order N persons x n variables--the-1

latter of which are standardized to have zero mean and unit variancerepre-

senting, respectively, occasions 1 and 2. The particular N persons and n

variables are, of course, common to both occasions. Standard scores on new,

derived components are contained in the matrices X
1 and X

-2
--if sc es are

separately derived for each occasion--or X--if a matrix common to both occasions

is hypothesized. These matrices are N x r, where r < n co ponents are con-

sidered adequate. We return to the issue of determing r later in the paper,

but will assume r is known in the procedures that follow. The component

pattern matrices, relating the X's to the Z's, are designated El and F2, or

simply F, if a common pattern is hypothesized; all are n x r. In all cases,

the F mat ices may be transformed to a simple structure pattern, P. n x r,

by a transformation matrix T, r x r, either orthonormal or in some cases, oblique.

Given the two data matrices, Zi and Z2, a standard principal-components

analysis of each is embodied in the following well-known equations:

(1)
Z = X F! E = X
1 1 1 1

E and

-22 X A= E X_T_F" E
2 2 2 2 2

where E and E both N x n, are matrices of "errors" of fit of the XF' or XTP'-1

matrices to the Z's. Given X.F or X
J-J-J
T PI of rank r < n, then by the Eckert-

-o-1

Young [1936] theorem, tr[E:E.] is minimal. In the specific instances that

follow, (1) is modified according to the specific hypothesis made.

Case

We begin with the most restrictive situation, that in which, for

descriptive and conceptual reasons, we seek a single component pattern matrix

that relates a .21111gle matrix of component scores, in a least-squares sense,

to the two observed data matrices, _21 and Z2. Alternatively, we hypothesize

7
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a single set of occasion-stable components which are related by a single

pattern matrix--again hypothesized to be constant over occasions--to the

observed data matrices. The Case I model, in place of (1), is

= XF' + E
l'

and

Z2 = XF' + E2.

Our criterion is

(3) cl)

I
= tr[EIE ] + tr[E'E

2
] = minimum,

1 1 2-

subject to the constraints

(4)

Combining (3 ) and (4) yields

(5)

X'X/N = I.

= tr[2121 + ZZ2 -2FX'Z1 -2FX'Z2 + 2FX'XF'] + tr[A(X'X/N -1)],

where A, r x r, is a matrix of Lagrange multipliers. Differentiating Al (see

Schönemann, 1965) with respect to the matrices of interest, and setting the

matrix of partial derivatives, in each case, to the null matrix yields

(6) acpt/aF = -2Z1X -2Zp( + 4FX'X = 0, and

(7) ae/ax = -2Z
1
F -2Z

2
F + 4XF'F + (1/N)X(A + A') = O.

Combining (4) and (6) yields

F = (1/2N)(ZIX + or

(8) F = (1/2N)Z*'X,

where 2*, N x n, given by Zl + Z2.is Substituting in (7), we have

(9)

where the symmetric matrix a = (A + )/N. Combining the first two terms of

(1/N)Z1Z*'X + (1/N)Z2Z*'X - (1/N2)XX'Z*Z 'X = XQ,

(9) and premultiplying by (1/N)10, we have

(10) (1/N2)x'Z*Z0OX N2)XTZ*Z*'X = Q = 0,

so that (9) may be rewritten
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(11) (1/N)SX = (1/N2)XX'SX,

where j_L= .4*Z*'. If we denote the canonical decomposition of S by

(12) S = WL2 141',

choosing for X the matrix OW --where W
T '

N x r, is composed of the first rr
columns of W--satisfies both (11) and (4) The initial pattern matrix, F,

is given by (8).

It is unlikely, however, that the F matrix so obtained will be of great

interpretive value, and transformation to a simple structure will be

generally required at this point. Thus, we seek the transformation to a

simple structure, T, r x r, and our new pattern P, n x r, and matrix of

transformed components X*, N x r, are given by

P = F(T')-1, and
(13)

X* = XT.

Both k and Z.2 are approximated by 2i*E:, leaving the criterion, 11 in (3)

unaffected. If transformed components that are still orthogonal are desired,

T is, of course, orthonormal and P = FT.

Computationally, the process of finding the latent vectors, W, in (12)

can be hastened by obtaining the canonical decomposition of Z*IZ* as

_2
(14) Z*. = VL V',

and then obtaining W by

W = Z*VL
-1

Such a procedure is considerably faster than that indicated in (12), since

n x n, will generally be of much smaller order than will Z*2_110, N x N.

Case II

In this case, which is somewhat less restrictive than is Case I, we

hypothesize a constant pattern matrix over occasions, but permit the component

9



scores to change, presumably as a function of maturation, experimental treat-

ment, or other possible causes, in much the same fashion that we would expect

the scores on the variables themselves to change over time. The Case II mddel is

Z
1
= X

1-
F' + E1' and

(16)

Z2 = X2F' + E2.

As before, our criterion, th

-7-11 is

(17) tr[ElE/ + tr[E;E2] = minimum,
(1)11

subject to the constraints

(18) x'x
1
/N = = x'x

2/N.1 2

Combining (17) and (18) yields

(19) (Pt, = tr[Z121 + 222 -2FXIZ1 -2FX;Z2 + FXIX1F' + FX;X2F']

+ tr[A1(XIX1/N I)] + tr[A2
2
-/N iflo

where Al and 11.2, both r x r, are matrices of Lagrange multipliers. Differentiating

11, with respect to F, Xi, and X, and setting the resulting matrices of partial

derivatives to zero, we have

(20) acPtI/ F = -22IX -22'X
2
+ 2FX'X

1
+ 2FX'X

2
=1 1 2- 1 2

0;

(21) aoti/a 2z1F + 2X1F'F + (1/N)X1 + Ai) = 0;

(22) aqI/ax2= 2z2F + 2x2F'F + (1/N)x2(A2 + A; ) 0.

Noting the constraints (18) we have, for (20)

(23) F = (1/2N)(21X1 +

which, when substituted into (21), yields

(24) (-1/N)(Z 21X + 2_2!X ) + (1/2N2 ) + X X12 ZTX1 1 1 1 2 2 1 2 2 1 1

+ X
1
X'2

1-
Z'X X

1
X12

2
21X

2
) + X

1
Q =1-2-2 2 2

where the symmetric matrix, g

we have

10

Premultiplying (24) by (1/N)Xi,



(25) (1/N2 + X'Z 27X
1 1 2 2 (1/2N2)(xiz1

-1-xyz

+ XIZ Z X
2 1 1

y2ZX2 ) - Q.

Thus, the left side of (25) is symmetric, since R. is, and Inspection of the

left side of (25) reveals that for this symmetry to exist, the matrix

X'2 Z'X must also be symmetric. If we represent Z
1
27 by the Eckart-Young

=7-2

factorization,

(26)
1

= WLV7,

where we have the canonical decompositions

Z Z7Z
1
Z' = VI,

2
V', and

1 2

(27)
= WL2 W7,

then choosing for Xl the matrix OW and for X2, N
31
V , where W and V contain

the first r columns of W and V, respectively, renders XIZ1ZX2 symmetric and

satisfies (18). It should be noted that substituting (23) into (22), rather

than into (21), leads to exactly the same result. We then obtain F by (23).

We return to optimally efficient procedures for obtaining latent roots and

vectors of the rather large (N x N) matrices i (27) later in the paper.

As in the Case I situation, we may transform the obtained F to a simple

structure solution, P. in terms of either orthogonal or oblique components,

X*--by the formulas in (13). Such a transformation does not alter the minimal

value obtained for in (17).

Case III

This case differs from Case 11 in that instead of the component scores

changing while being related to the observed data by a stable, unchanging

pattern matrix, the scores are hypothesized to be constant over occasions,

but related to the changing observed data variables by changing pattern

matrices. Thus, instead of interest centering upon changes over time of
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scores on variables that themselves are defined by unchanging linear composites

of known variables, as with Case II, the locus of interest with Case III is

the change over time in composition--in terms of the changing observed variables--

-f the components, which themselves are hypothesized to be constant over

occasions. As was pointed out earlier, longitudinal facto_ analytic studies

have usually been based on this assumption.

The Case III model is

Z =
'

XF' + E and
1 1 -1

(28)
Z
2
= XF + E

2
.

2

Our criterion is

(29) = tr[BTE
1
] + tr[E'E

2
] = minimum,

1 2

subject to the constraints

(30) X'X/N = I.

By combining (29) and (30 ), we have

(31) tr[Z1Z1 + Z?2 2ZIXFI 2Zp(F + F1X'XF1 + F2X'XI]

+ tr[A(X'X/N - I)],

where, as before, A, r x r, is a matrix of Lagrange multipliers. Differentiating

.11II with respect to X, Fl, and F2, and setting the resulting matrices to the

null matrix, we have

(32) 4)* /DX = -2Z
1
F
1
- 2Z

2-
F
2 1
+ 2XF'F

1
+ 2XF'F

2
+ (1/N)X(A + A') = 0;

III 2

(33) De/DF='X+_'X = 0;
III 1

-2Za 2F1X

(34) 4*
II

/ = -2Z'X + 2F
2
X'X = O.

I 2

Noting the constraints, (30), we may write for and (34)

F = Z'
'

X/N and
1-

F2 = Z'X/N.
-2

Substituting (35) into (32) yields

(35)
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(36) (2/N)(Z
1
Z7 A- Z

2
Z')X (2/N

2

1 2
Z
1
Z Z Z')X = X0,
1 2 2

where the symmetric matrix a = (A + A')/N. By reasoning similar to that

employed in the Case I solution, we note that by premultiplying (36) by

(1/N)X', we have

(37) (2/N
2
)[X'(Z1 1Z'

Z
2 2
Z')X] - (2/N 2 )[X'(Z Z Z

2
Z')X] = Q = 0,
2

so that (36) and (37) together imply that

(38) (1/N)UX = (1/N2)XX'UX,

where U = Z1Z1 4- Z2Z. If we denote the canonical decomposition of U as

(39) U =
2

then choosing for X the matrix N1/217 -where V N x r, is composed of the first

r columns of V--satisfies both (39) and (30). We then obtain F, and F, by (35).

The matter of transforming the obtained F, and F matrices to a simple

structure is not as straightf rward as with Cases I and II, since unlike

these applications, Case III involves two pattern matrices, but a single

matrix of component scores. For these scores to remain identical over

occasions after transformation they must be transformed by the same matrix,

which implies that a single matrix, T, must be found that results simultaneously

in optimal simple structures for both the occasion 1 and occasion 2 pattern

matrices. Although the problem would best be solved by optimizing a two-matrix

analytic criterion functien--for example, a simultaneous two-matrix varimax

function--we offer the following rather simplistic alternative. Form

(40) F* (1/2)(F1 4- F2),

that is, average the unrotated patterns. Next we would derive T as maximizing

the criterion function of choice when applied to Then

X* = XT;

-1
P
1

=
1

P
2

= -( ')-F2 T
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where, as before, if an orthogonal transformed solution is desired, P. = F T.
-1--

It is undoubtedly clear to the reader at this point that we have assumed

in the first three cases that a basic and enlightening structure common to both

occasions exists--either in the form of component scores or pattern matrices

relating these scores to the observed data. Needless to say, if there is

such a substantial change from the Z to the Z2 matrix that no such common-

structure exists, then attempting to fit matrices of scores or pattern

coefficients to the two sets of data will be unsuccessful.

Obtaining Latent Roots and Vectors for Cases II and III

The prospect of having to obtain the latent roots and vectors of the N x N

matrices implied by Cases II and III, where the number of subjects can be

expected to be fairly large, say 100 or more, may seem, at first, prohibitive,

in terms of computing time. Certainly, if one were to employ the well-known

Jacobi procedure, which yields all non-zero roots and vectors simultaneously,

the computation time involved would be prohibitive. In such instances,

Hotelling's [1936] procedure is much more efficient than.the Jacobi method

and certainly accurate enough.

As a check on the speed of the Hotelling procedure, a symmetric matrix

of order 98 x 98 was factored into latent roots and vectors, with the process

stopped after the first r = 5 vectors had been obtained. The CPU time on

the University of Alberta System 360/67 computer for this problem was

slightly over 30 seconds, a not excessive time reonirement relative to that

of most factor analytic computations.

Case IV

The researcher may wish to permit both the component scores and the

pattern matrices to vary between occasions. The procedures developed by

Corballis and Traub [1970] would be appropriate in such an instance--the

model developed involving components as a special case--but the fact that no

14
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simple structure solution is generally possible must be considered a shortcoming.

In any case, if no restrictions to equality are placed on either the component

scores or pattern matrix, various criteria may be considered to identify an

optimal pair of solutions. One such criterion involves obtaining true components

for each occasion--that is linear composites of the observed data matrices

(unlike in Cases 1, II, and III, where the observed data are only approximated

in a least-squares sense)--that are maximally related in a pairwise sense.

This criterionclearly expressible as a canonical correlation problem--

constitutes our Case IV.

The Case IV model is as in ( which we repeat here

11 =X1 FIand
1 -F E1,

(1)
Z
2

= X FT E .

The criterion is

(42) tr[X1X2/N] = maximum,
IV

subject to the constraints, expressed earlier,

(18) = I = XiX /N.
1 1 -2 -2

It should be clear that in (1) above, if all n components are obtained for

both occasion 1 and occasion 2, the E, and E matrices will be null.

As was noted above and X are N x r linear composites of, respectively,-1

Za and 32. We seek the matrices Ea and Ev both n x r, such that

7,--
1
X
1

X1 and

= X
2'

(43)

and the conditions (42) and (18) are met. Canonical correlation analysis

yields matrices Kt, pi, 9, and XI, where the respective columns of 31 and 31

are, indeed, maximally correlated, and columns within Xt and XI are mutually

uncorrelated, but, in general, the new vartates, while certainly having zero

lEi



mean, do not have unit variance. Since

* = * and
1-K

X
1 1,

* X*
2-K

=
2 2'

(44)

the diagonal matrices of reciprocal standard deviations of the X* and

variables are obtained by

(45)

D
1

[diag(TR and

D
2

[diag(K*'R
2
K*
2
)]--

2

13

and we have, for the matrices of standardized component scores, Xi and X2,

Xi = ZiKiri, and

= K*D
2 2 2'

From (46 ), initfal pattern matrices, Fi and F2 are obtained by

(46)

(47)

F
1

VIC1 _/N and
-1

F = -/N = R_K*D
2 22- 2 2 2.

In the interests of preserving the orthogonal characteristics of the linear

composites, and also ensuring the constancy of the value of in
(42),ITV

we may seek, at this point, an orthonormal transformation matrix, T, which

when applied to Fi and 4, renders a reasonably interpretable simple structure.

Since we are seeking a single transformation matrix to be applied to both

pattern matrices, we are faced with the same situation as in Case III. Again,

it is suggested that the F* matri- in (40) be that f r which the T matrix

is established. We then have

(48)

P1
_=F

1
T. Y_ = X1T, and

1

P = F
2 '

T. Y2 = X
2
T

2

so that

(49) tr[Y'Y /N] = tr[TT'X'X [X!X
2
/N).

1 _ 1

16
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We note that although an orthonormal transformation does not alter the

value of the c iterion, in (42), the individual diagonal elements of11V'

will not, in general, be the same as those of X!X
-1-2

/N, the latter

diagonal elements being, of course, canonical correlations between the component

scores for occasion 1 and those for occasion 2. It is noted, finally, that

a Case IV solution could be obtained by using the Orthogonal Frocrustes

procedures outlined in detail 1-,y Schönemann [1966]. Using such procedures,

we would seek orthonormal transformations to be applied to the Xl and X2

matrices obtained by standard component analyses of R and R,--transformations

that would satisfy (42). We judge the procedure outlined in this section

as more direct.

Case V

As with Case IV, with Case V we hypothesize that both the component scores

and pattern matrices vary between occasions. With Case V, however, we attempt

to bring both pattern matrices, rather than matrices of component scores, to

as similar a position as possible. As with previous cases, a simple structure

resolution ii possible.

The Case V model is, again, as in (1)

(1)

= F'
1

E
1

and
I

Z2 = X2F, E.

Our criterion, however, is

(50) = tr[E12E12] =

where E = F_
-2
F . Our constraints are as in4

(18)

If we let F

IN = I = X!2 X_/N.
2

, and .F2 = Zi.C..2/1i, the criterion, (50), may be written

subject to the constraints, (18), as

(51) = (1/N2)tr[X1Z1Z1X1 )qZ2y2 -2XIZ1qX2] tr[Al (X!X /N -I)]

17 trfA2(XpC2/N
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where Ai and A2, r x r, are matrices of Lagrange multipliers. Differentiating

4 with respect to X and X_ and setting the partial derivatives to the null1 2
matrix, we have

(52) lax1 = (2/N2)u1zix1 z.)( 1/N)x A') =
1

and

(53) aWax2 = (2/N2)(z2zp(2 z2zix1) (1/N)x2(A2 ± A) = 0.

Letting the symmetric matrix (AI + Al)/2 = and premultiplying (52) by XI,

we have, for (52),

(54)
2Z1X = N Q_.

1-1-1 1 -1

Equation (54), in addition to similar manipulation of (53), reveals that, by

a symmetry argument like that used in the somewhat similar Case II, the Case V

criterion is satisfied, subject to the constraints noted, by taking for Xi

and X the matrices, respectively, N _and where W and V are composedr r r r
of the first r columns of W and V. obtained by the Eckart-Young factorization

given in (26),

(26)
-1-

Z" = WLV'.
2

The F, and Fn matrices are subsequently given by

(55)

F = Z'X
1
/N and

-1 1-

F2 = /N.

At this point we would likely seek simple structure resolutions for

Fi and F2. If a single orthonormal transformation, T, is applied to Fl and F2,

yielding Pi and P2, the criterion (50) is unaffected (although the individual

diagonal elements of Fi 2E12 certainly are affected), since if Ft2 = FIT F2T

- 12)1, then

(56) tr[EEt2] = tr [(E12T(E
)'

= tr[T'Ei2E12T] = tr[El
12T)] 12E12].

We thus recommend that the same simplistic procedure outlined with Cases III

is
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and IV solutions be used, in which we form F* = (l/2)(F1 F2 and then rotate

F* to a position satisfying some analytic orthogonal simple structure criterion.

We then have, for interpretive purposes, P FIT ti P2 = F2T, where T is

the orthonormal transformation applied to F .

As with Case IV, a Case V solution could, alternatively, have been

obtained by applying Orthogonal Procrustes procedures [Schönemann 19661.

Such procedures would be applied to F1 and F2 matrices obtained by standard

component analyses of R, and R2. Again, we judge the technique outlined in

this section to be more direct.

The Problem of the Number of Com onents to Ratain

The decision regarding the appropriate value of r in the analysis

procedures just described may be seen as either possibly the result of the

analysis procedures themselves or the result of an assessment of the

congruence between components derived by standard component analyses on the

two occasions. At this time not enough experience has been gained with

data to suggest rules of thumb for deciding the correct number of components

when the various cases described are adopted and the analysis proceeds

exactly as outlined. It is likely, furthermore, that different rules will

apply in the different cases. In short, few suggestions can be made at this

time for deciding on the appropriate number of Case II components, for example,

as a result of a Case II analysis. As more experience is gained involving

real data and the analysis procedures described, it is hoped that some suggestions

regarding the number of components will come out of these procedures themselves.

As is noted later, an exception to the above situation may be Case IV.

The other alternative is to perform principal component analyses on the

ZI and Z2 matrices, and apply current rules of thumb to ascertain r; sub-

sequently, with a knowledge of r, the experimenter would apply the appropriate

procedures as previously described. An advantage exists with longitudinal
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data in deciding on r, since the notion of stability over time can be added to

the other various rationales. As one possibility, the experimenter could

factor R, and R
-2

nto latent roots and vectors and apply the Kaiser-Guttman

rule of accepting for r, the number of latent roots greater than one. If this

rule led to the same value of r for the two occasions, some faith could be

placed in this particular value. On the other hand, if the number of latent

roots greater than one differed on the two occasions, other tests would be

indicated.

Cross-correlating the components obtained on the two occasions X and X
-2,

is another possibility that could be employed either with or without the

aforementioned inspection of latent roots. If the canonical decompositions of

2 , 2 ,

El and F.12 are designated, respectively, gAgl, and gAg2, and the matrix

of correlations between variables on occasion 1 and 2 is designated R12,

then the matrix

(57) X'X /N = M
-1

-1
Q'R

12
Q M

1 2 1 2 2
-1

contains the cross-occasion correlations of components. If we arrange the

rows and colunats of this matrix to maximize tr[XIX2/N], then inspection of

the diagonal elements would indicate at what point the components at occasion I

cease to have clearly identifiable pairmates at occasion 2. We might regard

these between-occasion component correlations as component stability coefficients

and take for r the number of components for which the stability coefficient

exceeds some minimal level of reliability, for example, .7.

Perhaps a better approach than that just described would be to determine

the maximum congruence that can be obtained between columns of Xi and

The canonical correlation procedures outlined in Case IV would provide a way

of applying this rationale. We would simply obtain the matrices Xi and X2 as

given in (46), with the one difference being that we would continue to obtain

20
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components until the canonical correlation dropped below some predetermined

value, k, again, perhaps, .7. The value of r would be the number of canonical

correlations greater than k.

Summary of the Procedures Pro osed

The preceding analysis procedures are brought together in Table 1, in

the interests of presenting a unified view of these techniques. The E, and E

matrices given in the column headed "Criterion" are, in general, matrices

of discrepancies between the ob erved data matrices, Zl and Z2, and their

reproduction from respective products of component scores and patterns.

The "solutions" given will, for the most part, require augmentation from

material in the text. It may be worth noting, finally, the great similarity

between Case II and Case V.

Empirical Examples

In this section results of solutions based on three of the five cases

developed earlier are presented. Each is discussed in turn.

A Case I Solution

Data for the application of Case I procedures were constructed by

computer simulation techniques. This alternative was found necessary since

very few longitudinal studies were found in the literature, and those data

that were available did not include the original score matrices, needed for

a Case I solution. The results of the Case I analysis appear in Table 2.

First, a 50 x 3 matrix was constructed using random number generation.

Next, by resealing of the columns and a roots and vectors decomposition, a

matrix, X, of "true" component scores, 50 x 3, was obtained such that each

column had exactly zero mean, unit variance, and zero intercorrelation with

each other column. A "true" rotated p'ttern matrix, P, displayed in Table 2,

was introduced, and the product XPI formed, yielding a 50 x 9 matrix. Finally,
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TABLE 2

Correlations within and between Occasions, Correlations between True and Estimated
Component Scores, and True and Estimated Rotated Pattern Matrices for
a Case I Solution Using Artificial Data (Decimal Points Omitted)

Correlations of Variables

1 100

Occasion 1 CR Occasion 2 (R_2
100

2 75 100 73 100
3 78 74 100 74 59 100
4 -09 -09 -01 100 -11 -07 11 100
5 -04 -04 -07 67 100 -25 -17 -04 72 100
6 -12 -14 -07 67 69 100 -11 -02 13 72 72 100
7 -11 -01 02 01 03 -22 100 10 20 12 02 -03 14 100
8 -07 06 03 07 05 -16 68 100 -13 06 -11 -06 04 11 67 100
9 -14 -14 -04 07 08 00 73 60 100 -19 08 -08 -03 -05 14 68 68 100

Correlations between Variables on Occasion 1 Correlations between True and
(Rows) and Occasion 2 (Columns) (R ) Estimated Rotated Component Scores

-=-12

1 82 78 63 -09 -15 -08 -01 -21 -25 Estimated Component
2 80 74 68 -09 -19 -07 -02 -18 -21 True
3 73 75 65 -04 -17 02 07 -12 -10 Component II III
4 -09 -02 21 67 71 80 08 08 05
5 -03 -06 20 64 66 62 07 18 -04 967 -031 022
6 -13 -09 06 69 73 65 -05 -08 -14
7 -02 17 09 -06 -07 03 72 73 71 11 026 967 -006
8 -04 16 05 05 -03 13 65 65 64
9 -05 16 03 02 -07 08 76 71 72 III -021 016 961

Rotated Pattern Matrices

True (13 Estimated 69

11 III

1 80 00 00 90 -09 -10
2 75 00 00 88 -08 05
3 70 00 00 85 07 01
4 00 80 00 00 87 02
5 00 70 00 -06 85 01
6 00 75 00 -03 86 -01
7 00 00 75 08 -01 88
8 00 00 65 -03 03 84
9 00 00 70 -08 00 87
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two matrices of "errors"--E
1

and E
-2'

both 50 x 9, of (2) were constructed using

random numbers. These matrices were then deviated and resealed so that each

column had zero mean and variance .25. The matrices XP' + E and XP' + E were_a

then formed and column resealed to have unit variance, yielding, respectively,

Z, and Zn

The resulting R
1' -2

and R12 matrices appear in Table 2. Using formulas

(8) (14), and (15), matrices of, respectively, estimated pattern coefficients

and component scores were obtained. A normal varimax rotation was applied

to the obtained pattern, yielding the P matrix in Table 2. The obtained

orthonormal transformation was then applied to the estimated component scores.

These transformed component scores were then correlated with the "true"

component scores constructed earlier, with the resulting correlations presented

in Table 2. Separate component analyses of Ri and R2 ensured that a decision

of three components would be reached, and this value for r was retained

throughout the analyses.

It is probably true that the great congruence between the "true" and

estimated elements of this example are, in large part, due to the simplicity

and artificiality of the data, even though an attempt was made to simulate

real conditions by generating variables with reliability only approximately

.70 or so, as can be seen from the R
12

matrix. In any case, it appears

true that if all that changes from occasion 1 to occasion 2 is error, and

that time-stable variables and components can be reasonably hypothesized the

Case I solution is useful in delineating this stable configuration.

A Case III Solution

Data for the application of Case III procedures were constructed in

somewhat the same manner as for the Case I example. It will be recalled

that the component scores are hypothesized to be constant in Case III, with

possibly changing patterns. The same component score matrix, X, used with
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Case 1 was postmultipiied by the transposes of two different "true" rotated

patterns, Pi (identical to the P matrix of the previous example) and P2, for

the two occasions. These patterns, as well as the other matrices of interest

for this example, are displayed in Table 3. It will be noted that Pi and P2

differ somewhat, reflecting the fact that factorial complexity greater than

one--for variables 3,5, and 8--and more broadly defined factors are present

at occasion 2, but not occasion 1. Again two 50 x 9 matrices of random error--

mean zero, variance .25 by columnsEl and E2 of (28), were constructed, and

were added to XP!
1

and XF" respectively. The resulting matrices were then

column resealed to have unit variances, yielding, respectively, Zi and Z2.

Clearly, although the underlying three components (the value of three

for r was again confirmed from analyses of Ri and R2) are stable over the two

o casions, the variables themselves have changed more than randomly between

occasions, as can be seen from the R12 matrix. The initial pattern matrices

were obtained using (35), after the initial matrix of component scores had

been computed using (39) in connection with the Hotelling procedure discussed

earlier. The initial patterns were combined using (40) and a normal varimax

rotation was performed on the resulting F* matrix. The transformed patterns,

as well as transformed component scores, were obtained by (41).

As is seen in Table 3, the three obtained vectors of component scores

were very close to the "true" scores and the estimated rotated pattern

matrices for both occasion 1 and occasion 2 were extremely close to the

corresponding "true" patterns. Once again, however, the great similarity

between "true" and estimated elements in this example is likely, to some extent,

a function of the artifi-ial nature of the data. If, however, the experimenter

wishes to hypothesize--for theoretical or conceptual reasonsunchanging

underlying components, although the variables themselves can be observed to

change somewhat from occasion 1 to occasion 2, the Case III solution may be
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TABLE 3

Correlations within and between Occasions, Correlations between True and Estimated
Component Scores, and True and Estimated Rotated Pattern Matrices for Each Occasion

for a Case III Solution Using Artificial Data (Decimal Points Omitted)

1 100

Occasion 1

Correlations

(R1)

of Variables

Occasion 2 (R2

100
2 72 100 66 100
3 72 68 100 50 58 100
4 -06 09 07 100 -10 -08 42 100
5 -08 06 02 66 100 06 13 38 47 100
6 01 07 09 70 62 100 -23 -09 31 69 44 100
7 15 04 14 01 04 04 100 14 04 17 07 46 -09 100
8 08 02 10 06 06 -08 70 100 54 52 41 10 49 -08 48 100
9 06 05 -02 09 09 01 61 68 100 04 -06 04 -01 42 -18 68 47 100

Correlations between Variables on Occasion 1 Correlations between True and
(Rows) and Occasion 2 (Columns) Estimated Rotated Component Scores

(112)

1 73 75 43 -14 06 -22 15 56 03 Estimated Component
2 68 70 58 -06 10 -05 12 53 00 True
3 65 75 48 -05 03 -16 07 46 -02 Component II III
4 -09 05 52 66 57 63 05 08 -11
5 -03 -01 46 73 54 61 10 09 09 968 -042 069
6 -06 10 47 77 50 60 02 04 -02
7 20 11 12 01 50 -23 72 54 69 II 042 967 -053
8 09 09 -01 -12 51 -15 67 41 61
9 03 02 09 -08 48 -04 53 45 67 III -060 064 960

Rotated Pattern Matrices

Occasion 1 Occasion 2

True (P
1

) Estimated (P ) True ( ) Estimated (P2)

I II III i 11 III 1 11 III I II III

1 80 00 00 85 -14 12 80 00- 00 84 -14 13
2 75 00 00 83 00 05 75 00 00 89 -02 05
3 70 00 00 69 -04 04 50 50 00 67 53 07
4 00 80 00 08 81 00 00 80 00 -02 88 -05
5 00 70 00 03 69 06 00 50 50 09 65 59
6 00 75 00 10 78 -04 00 75 00 -11 82 -19
7 00 00 75 06 00 76 00 00 75 05 07 83
8 00 00 65 -01 -02 74 50 00 50 59 07 60
9 00 00 70 -03 04 61 00 00 70 -08 -02 86
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used to implement this hypothesis.

A Case IV Solution

In contrast to the examples used to illustrate Cases I and III, our data

for the application of Case IV procedures were those gathered by Meyer and

Bendig [1961], and subsequently reanalyzed by Harris [1963] and Corballis

and Traub [1970]. As with the latter study, the number of components (factors,

in the Corballis and Traub study) was determined to be two. Separate component

analyses of the Ri and R2 matrices showed one latent root greater than one for

Ri and two, for R2. The canonical correlation analysis subsequently conducted

yielded the following canonical correlations: .89, .74, .58, .45, .37. Thus,

by finding maximally congruent linear composites, we found two components in

each set that correlated highly enough to suggest that we were likely dealing

with the same two constructs on each occasion. The R R and R matrices,_1, _2, -12

as well as the other matrices of interest, are displayed in Table 4.

The unrotated pattern matrices in Table 4 were obtained by the procedures

given in (44) through (47). A normal varimax transformation was applied to

these patterus, with virtually no improvement in simple structure. Inspection

of the plane spanned by the I-II vectors for each occasion revealed that no

true simple structure resolution is possible with these data. It will be

noted that although the two component cross-occasion correlations were altered

in the transformation, their sum was unaltered. Inspection of the two unrotated

(or rotated) pattern matrices reveals that a high degree of congruence was

obtained, with the interpretation of the components likely identical on the

two occasions. Finally, some of the difference between the present solution

for these data and that given by Corballis and Traub [1970] is due to the

fact that the latter authors derived components in terms of disattenuated

correlations.
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TABLE 4

Correlations within and between Occasions, Correlations between Occasion 1
and Occasion 2 Components, and Occasion 1 and Occasion 2 Pattern Matrices

for a case IV Solution Using the Meyer and Bendig Data (Decimal Points Omitted)

Correlations of Variables

Between Occasion 1 (Rows)

1

2

3

4

5

Occasion

100
37 100
42 33 100
53 14 38
38 10 20

1 (R

100
24 100

Occasion

100
34 100
46 18 100
56 06 54
24 15 20

2 (g2

100
16 100

and Occasion

81 35
35 65
49 20
58 -04
32 11

2 (Columns) (R12

42 41 24
32 14 15
75 40 17
46 73 15
26 19 43

Correlations between Occasion 1 and Occasion 2 Components

Rotated Components

Occasion 2 Component

Unrotated Components

Occasion
Occasion 1
Component

886 000

II

2 Component

000 743

859 056

056 770

Pattern Matrices

Occasion 1 Occasion 2

Unrotated Rotated Unrotated Rotated

II

1 87 11 73 48 91 -02 83 38
2 48 64 15 78 38 77 00 85
3 77 04 68 37 77 -05 72 29
4 69 -62 89 -26 64 -57 82 -23
5 41 04 35 21 31 09 24 22
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4. Conclusions

Procedures have been developed and in some cases illustrated for the

factor analytic treatment of data matrices, involving the same subjects,

obtained on two occasions. The specific techniques have differed in terms

of whether or not the component scores and/or pattern matrices are hypothesized

to be stable or unchanging over time. Good reasons can be advanced for the

hypothesis of stable scores and patterns (our Case I) in some situations where

only constructs that are constant relative not only to scores of the subjects

measured, but also to the composition of these constructs in terms of linear

combinations of the observed variables are of any theoretical interest. On

the other hand, it is conceivable that situations may arise in which only one

of these matrices may reasonably be expected to be constant. That matrix

may be the component pattern (Case JI), with primary interest in changing

scores of the subjects (relative to the respective group mean; changes in

group elevation are not of concern) over time on these constructs whose

composition over time is hypothesized not to change, or it may be the matrix

of unchanging scores (Case III), in which the interest lies in the changing

composition (relative to the observed variables) of these unchanging constructs

(relative to the subjects involved). If the experimental situation suggests

that both scores of the subjects and composition relative to the variables

can be expected to change over time, our Cases IV and V may be appropriate,

Case IV if we wish to maximize the congruence of the changing scores, and

Case V if we wish as similar composition of the (changed) factors as possible.

In each case, provisions have been made for a simple structure resolution.

In all cases except Case IV, least-squares estimates have been provided for

all hypothesized matrices.

Although the procedures developed for Cases I, II, III, and V are least-

squares, we have not attempted to provide techniques for evaluation of the
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hypotheses embodied in the various cases. It appears conceivable that

likelihood ratio procedures could be developed to estimate the goodness-of-

fit of the reproduced data arrays--in terms of the estimated matrices--to

the observed 2, and Zn matrices.
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